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I. Problem Statement 
An existing treatment for lowering intraocular pressure (IOP) in Glaucoma patients is the topical 
application of the drug Brimonidine. However, administration of this drug in the form of eye drops has its 
limitations. We propose an alternative topical medication delivery method via contact lens. By 
mathematically modeling this situation we can study how the medication diffuses through the cornea of 
the eye to relieve symptoms of Glaucoma. Using this model and the dynamic data it produces we can 
propose the most effective treatment plan for patients with Closed-angle Glaucoma using the new 
delivery method. 

II. Introduction to Glaucoma  
The human eye is a complex organ. Its function of gathering light is dependent on intricate processes. For 
our discussion of 
Glaucoma, we first 
delve into process of 
how the eye controls 
the fluid inside it. 

Simply described, 
the eye is a sphere 
of fluid with a lens 
at the front and light 
detection at the back 
by the retina (see 
Figure 1(a)), The 
fluid is excreted by 
glands within the 
eye to support its 
shape and nourish 
the tissues within the eye. This fluid drains from the eye through canals near the cornea. Intra-ocular 
pressure (IOP) is controlled by the trabecular mesh, which stretches across the drainage canal openings. 
Glaucoma is caused by excessive fluid buildup, most often 
due to impaired drainage (see Figure 1(b)). Left untreated, 
this increase in IOP may eventually damage the optic 
nerve, which transmits visual information from the retina 
to the brain. Damage to the optic nerve can cause 
blindness. In fact, Glaucoma causes about 9 to 12 percent 
of blindness in the United States, and affects 
approximately 3 million people. [1].  

Two types of fluid-drainage impairment can cause 
Glacoma. The most common form, Open-angle, is created 
when the fluid flows too slowly through the trabecular 
mesh [2] (see Figure 2).  
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Figure 2: Fluid exits too slowly as the meshwork 
itself is dysfunctional [9]. 
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Figure 1:  a.) Healthy, normal eye and b.) Eye suffering from Glaucoma [8]. 
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Closed-angle Glaucoma (also known as Angle-Closure Glaucoma) results when iris tissues cover the 
trabecular mesh and completely block the fluid from exiting the eye [2] (see Figure 3). Though less 

common, Closed-angle Glaucoma presents acutely and 
requires immediate attention. Symptoms of Closed-angle 
Glaucoma often include excessive fluid pressure, pain, 
nausea, redness of the eye, and blurred vision [2]. Existing 
treatments for this type of Glaucoma include conventional 
surgery, laser trabeculoplasty, and oral and topical 
medication [2]. The focus of this paper is minimally invasive 
treatment with medication.  

For our project, we chose Brimonidine, a topically applied 
Glaucoma medication. This FDA-approved drug is an 
effective treatment for Closed-Angle Glaucoma [3]. Dosage 
is typically 1 or 2 drops of 1% or 2% solution into the eye up 
to three times per day [4]. The difficulty of adherence to the 
rigorous daily regimen associated with applying eye drops 

causes the treatment to be less effective for many patients [5] and much of the drug does not remain 
within the eye. An alternative delivery method for Brimonidine would ideally eliminate the traditional 
method of placing drops into the eye several times per day. 

III. Our Proposal 
We propose the topical application of the IOP-lowering drug Brimonidine via a contact lens to create a 
more cost effective and easier to use delivery mechanism for Glaucoma patients. The contact lens 
contains only one drop of the drug and has the initial mass, M0. In order to mathematically model this 
system, we made several key assumptions. First, the contact lens and liquid are infinitely long and 
infinitely thin. This eliminated the need to consider how the dimensions of these objects affected our 
model. Second, the trabecular meshwork acts like a sink. This allowed us to ignore the flow properties 
within and past the trabecular meshwork. Lastly, we assume that movement occurs in one dimension 
along the x-axis and that net diffusion along the y and z-axis is zero. 

	
  

Figure	
  3: Meshwork is blocked and fluid cannot 
flow out of the eye [9].	
  

	
  	
  	
   	
  

Figure 4: (left) Brimonidine diffuses through the cornea to interact with the target area to open the trabecular meshwork. 
(right) Once the trabecular meshwork is open Brimonidine will diffuse through the cornea to enter the trabecular meshwork, 
which acts like a sink. [9] 
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For the mathematical model, we divided the diffusion dynamics in the cornea into two separate time 
intervals. In Situation 1, we examined the initial diffusion of the drug across the entire length of the 
cornea, L, before the trabecular meshwork was unblocked. The initial mass of the drug is immediately 
present at outer end of the cornea at t=0. Therefore, there is no diffusion of the drug into or out of our 
system. In Situation 2, we modeled the drug diffusing from the cornea into the unblocked trabecular 
meshwork. We assume that since the contact lens has been removed there is no drug entering our system 
and that the meshwork at x=L acts like a sink as discussed earlier. Figure 4 is a visual representation of 
these dynamics within the cornea for Situations 1 and 2. Through these mathematical models, we observe 
the diffusion patterns as the drug first enters the eye and the outward diffusion after the medication has 
effectively opened the trabecular meshwork.   

IV. Analytical Methods 
In this section, we will discuss the use of analytical methods to model the dynamics of our system. The 
model is divided in Situation 1 (the diffusion of the drug through the cornea) and Situation 2 (the 
diffusion of the drug into the trabecular mesh).  

A. Situation 1: Diffusion Across the Cornea 
The diffusion across the cornea is modeled using the diffusion equation, as seen in Equation 1 

 𝜕𝑢
𝜕𝑡 = 𝐷

𝜕!𝑢
𝜕𝑡! ,𝐷 = 5.5×10!!  𝑚𝑚!/𝑠  (1) 

   
where u is concentration, t is time, and D is diffusivity constant [6]. D accounts for diffusion through both 
the outer epithelial cells and the cornea [7]. The diffusion equation is evaluated using the boundary and 
initial conditions seen in Equations 2-4. 

 𝜕𝑢
𝜕𝑥 0, 𝑡 = 0  (2) 

 𝜕𝑢
𝜕𝑥 𝐿, 𝑡 = 0 (3) 

 𝑢 𝑥, 0 = 𝛿(𝑥)𝑀!  (4) 
   
Equation 2 represents the boundary condition at the surface of the eye, x=0, of zero flux because until t=0 
there is no diffusion into the eye. Equation 3 represents the boundary condition at the trabecular 
meshwork at the end of the cornea. At x=L, or 0.535 mm, the flux is zero because while the trabecular 
meshwork is blocked, the drug nor the ocular fluid can diffuse out of the cornea. Equation 4 represents the 
initial condition at t=0, when the drug is first introduced to the eye; the delta function creates an infinite 
pulse (just after t=0) of the initial mass, M0=0.2 mg.  

The diffusion equation is evaluated using separation variables, as seen in Equations 5a-g. 

 𝑢 𝑥, 𝑡 = 𝑇 𝑡 𝑋 𝑥     (5a) 
 𝑋(𝑥) = 𝐵𝑐𝑜𝑠

𝑛𝜋
𝐿 𝑥  (5b) 

 
𝑇(𝑡) = 𝐴𝑒!!

!"
!

!
!   (5c)  



	
   5	
  

 
𝑢 𝑥, 𝑡 = 𝐴! + 𝐴!𝑒

!! !"
!

!
!  𝑐𝑜𝑠

𝑛𝜋
𝐿 𝑥

!

!!!

	
    (5d) 

 
𝐴! =

1
𝐿 𝛿(𝑥)𝑀!

!

!!
=
𝑀!

𝐿   (5e)  

 
𝐴! =

2
𝐿 𝛿(𝑥)𝑀!

!

!!
𝑐𝑜𝑠

𝑛𝜋
𝐿 𝑥 =

2𝑀!

𝐿   (5f)  

 
𝑢 𝑥, 𝑡 =

𝑀!

𝐿 +
2𝑀!

𝐿 𝑒!!
!"
!

!
!  𝑐𝑜𝑠

𝑛𝜋
𝐿 𝑥

!

!!!

	
   (5g) 

 

	
  

Figure 5: a.) Concentration profile in terms of time and distance, x, of Situation 1 results in a delta spike when time and distance 
are both just after 0. Theoretically the peak would inifitely tall, but due to the limitations of plotting, the height of spike related to 
the number of  sumations. b.) The concentration reaches a steady state of 0.3738 mg/mL, which is equivalent to the initial mass 
distributed over L, at t=9.96E4. c.) The dynamics of the concentration profile just after the spike show an expoential decay along 
both Time and x for Situation 1.  

Figures 5 shows the delta function right after zero and the steady state concentration value of 0.3736 
mg/mm, or M0/L, is reached by 28 hours. The delta pulse is approaching infinity, but the amplitude is 
limited by the number of finite terms in our series. We expected a steady state value because the 
trabecular meshwork is still blocked so the drug is unable to leave the cornea. Therefore, we are left with 
a linear density across the cornea. 
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B. Situation 2: Diffusion into the Trabecular Meshwork After Steady State is Reached 
Assuming the trabecular meshwork opens like a switch after the concentration reaches steady state, the 
diffusion into the trabecular meshwork is modeled using the diffusion equation (see Equation 1), which 
begins a new time period.  The diffusion equation is evaluated using the boundary and initial conditions 
seen in Equations 6-8.  
 𝜕𝑢

𝜕𝑥 0, 𝑡 = 0  (6) 

 𝑢 𝐿, 𝑡 = 0  (7) 
 𝑢 𝑥, 0 =

𝑀!

𝐿   (8) 

Equation 6 represents the boundary condition at the surface of the eye, x=0, of zero flux because until t=0 
the concentration is at steady state so there is no diffusion into the eye. Equation 7 represents the 
boundary condition at the trabecular meshwork, x=L, of zero concentration because the trabecular 
meshwork acts as a sink. Equation 8 represents the initial condition at t=0, when the drug is at steady 
state, so it has an initial value of the initial mass over the length from the cornea to the trabecular 
meshwork.  

The diffusion equation is evaluated using separation of variables. The solution is very similar to situation 
1, however, a difference appears when the new boundary and initial conditions are applied to solve for λ. 
Equations 9a-e show the solution to Situation 2, where An is calculated in the same manner as in situation 
1.  

𝑢 𝑥, 𝑡 = 𝑇 𝑡 𝑋 𝑥   (9a) 

𝑋(𝑥) = 𝐵𝑐𝑜𝑠
𝜋(1+ 2𝑛)

2𝐿 𝑥  (9b) 

𝑇(𝑡) = 𝐴𝑒!!
!(!!!!)

!!
!
!   (9c)  

𝑢 𝑥, 𝑡 = 𝐴!𝑒
!! !(!!!!)

!!
!
!  𝑐𝑜𝑠

𝜋(1+ 2𝑛)
2𝐿 𝑥

!

!!!

	
    (9d) 

𝑢 𝑥, 𝑡 =
4𝑀!

𝐿 𝜋(1+ 2𝑛) (−1)!𝑒!!
!(!!!!)

!!
!
!  𝑐𝑜𝑠

𝜋(1+ 2𝑛)
2𝐿 𝑥

!

!!!

	
    (9e) 
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Figure 6: a.) Concentration profile in terms of time and distance, x, of Situation 2 results in an exponential decay with time and 
parabolic decay with distance. At time of 0, the magnitude along all of x, except L, is at the steady concentration of Situation 1, 
which satisfies our initial condition. b.) The concentration profile has zero flux along time of zero, which satisfies our boundary 
condition. The concentration returns to zero after a time of 1E5 seconds. 

Figures 6 satisfies the boundary conditions of zero flux along the x-axis, a boundary concentration of zero 
at L, and an initial magnitude of 0.3739 along x (except L) at t=0. Also, there is an exponential decay 
with time and parabolic decay with distance. This is expected because before the trabecular meshwork is 
open there is no diffusion out of the cornea and after the trabecular meshwork is open the diffusion occurs 
until the concentration is approximately zero. 	
  

V. Numerical Methods 
In this section, we will discuss the use of numerical methods in MATLAB to verify our analytical 
solutions and more accurately model the dynamics of our system. The model is still divided into Situation 
1 (the diffusion of the drug through the cornea) and Situation 2 (the diffusion of the drug into the 
trabecular mesh). For all the situations, we used MATLAB’s built-in pdepe function to approximate the 
solution to our partial differential equation subject to our boundary conditions and the initial condition. 

A. Situation 1: Diffusion Across the Cornea 
The first step was to verify that our analytical solution to Situation 1 was correct.  We used the same 
differential equation, initial condition, boundary conditions, and parameters as in our analytical section 
(see Equations 1-4). Figure 7 shows the resulting plots of the numerical approximation. As in the 
analytical solution there is a delta pulse which represents our initial input of the drug at t=0. In our 
analytical method, the amplitude of this spike approaches infinity, but in the numerical method it is equal 
to the initial mass of the drug as shown in Figure 7(a). We get a finite value rather than an infinite number 
due to the numerical approximation methods used by MATLAB’s pdepe. The drug then diffuses across 
the cornea and reaches a steady state value since we have no flux on either end of the model. As shown in 
Figure 7(b), the steady state is equal to 0.00303 mg/mm. Due to MATLAB’s pdepe approximations it is 
not immediately clear that this is our expected value, or the linear density of M0/L = 0.374 mg/mm. If we 
take the steady state value from Figure 7(b) and multiply by the length of our xmesh vector as determined 
by our step size, dx, divided by the total length, L, we get our anticipated value for the steady state 
concentration, as seen in Equation 10. Therefore, from the results of this numerical analysis we can 
assume that our analytical solution is correct for Situation 1. 

 0.00303   !"
!"

× !"#$%!  !"  !"#$!
!

= 0.374   !"
!!

= !!
!

  (10) 
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Figure 7: a.) This is the pdepe solution to Situation 1 where there is a delta peak at one time step after 0 with an amplitude of 0.2, 
or the initial mass of the drug, b.) The concentration profile over time of Situation 1. We see the graph reach a steady state value 
of 0.003 mg/mm which, after being multiplied by steps/length, is equal to M0/L, c.) This is the zoomed in view of the dynamics 
of Situation 1. We can see that as time increases, the drug diffuses across the cornea and approaches a steady state across L. 

B. Situation 2a: Diffusion into the Trabecular Mesh After Steady State is Reached 
As in the section above, we wanted to verify that our analytical solution was correct for Situation 2. Using 
the same differential equation, parameters, initial condition, and boundary conditions (see Equations 1, 6-
8) as in our analytical method section we solved for the solution numerically in MATLAB. Figure 8 
shows the resulting plots for this approximation. As shown in Figure 8(a), at t=0 the graph starts at the 
constant concentration of M0/L for all values of x. This is expected because we assumed our system 
reached steady state in Situation 1 before the trabecular mesh was unblocked and the drug could diffuse 
into it. Therefore, we assumed our initial condition for this situation to be the final state of Situation 1. In 
addition, we see that at x=L for all time points, the concentration is at zero just as in our analytical 
methods. This is because we set the right-hand boundary condition to zero, or a sink, so that when the 
drug reaches L, it immediately leaves the cornea. Lastly, in Figure 8(b) the concentration of the drug in 
the cornea is essentially zero after approximately 47 hours. These dynamics achieved by a numerical 
approximation are very similar to what we saw in our analytical methods section. Therefore, we can 
verify that our analytical solution is correct. 
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Figure 8: a.)This is the pdepe solution to Situation 2a. The value at t=0 across all x values is the final steady state value from 
Situation 1, or M0/L. b.) This is the plot of concentration vs. time within the cornea after the meshwork is unblocked. At the end 
of the time period , the concentration of the drug in the cornea is approximately zero 

C. Situation 2b: Diffusion into the Trabecular Mesh after Critical Concentration is Reached 
In this section, we wanted to better represent the dynamics of the system to propose the most effective 
treatment plan for patients with Glaucoma. Instead of assuming the meshwork is unblocked after a steady 
state concentration is reached, we found that the drug is most effective after two hours of contact with the 
tissues [3]. Therefore, using our data from Situation 1, we found that around t=2 hours the mass of the 
drug is Mc= 0.00202 mg. The modified differential equation and initial condition are shown in Equations 
11-13. We used the same boundary conditions as in Situation 2a. The differential equation now includes a 
source term to represent the rest of the drug that still needs to diffuse through the cornea from situation 1. 
The source term includes a decaying exponential that is dependent on time and multiplied by the 
difference between the initial mass of the drug and the critical mass. The initial condition is the critical 
mass at which the meshwork was unblocked multiplied by a decreasing exponential. We use the decaying 
exponential term because we assume the concentration is no longer constant across the cornea and varies 
depending on the distance x. With equations 11-13 of the diffusion equation, initial condition, and the 
boundary conditions as stated we get the following plots in Figures .  

 𝜕𝑢
𝜕𝑡

= 𝐷
𝜕!𝑢
𝑑𝑡!

+ 𝑠 (11) 

 𝑠 = (𝑀! −𝑀!)𝑝𝑒!!" , 𝑤𝑖𝑡ℎ  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠  𝑝  𝑎𝑛𝑑  𝑘 (12) 
 𝑢 𝑥, 0 = 𝑀𝑐 ∗ 𝑒!!" (13) 
 

As shown in Figures 9 and 10, the concentration at x=0, t=0 is the critical mass 0.00202 mg which then 
decays exponentially across the length of the cornea. This represents that the concentration across L is no 
longer uniform at the beginning of this time period because the mesh was unblocked before steady state 
was reached. The concentration then increases due to the source term in the differential equation to the 
maximum value as shown in Figure 16. This maximum value is approximately M0-Mc or the amount of 
drug that is left to diffuse through the cornea. After the peak, the drug diffuses out across L and into the 
mesh at x=L. Since we assumed that the mesh is a sink, the concentration is always zero at x=L. At the 
end of the time period, the concentration of the drug in the cornea is zero because the total amount 
diffused into the trabecular meshwork. 
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Now the model more accurately represents the expected dynamics and we can use it to propose an 
effective treatment plan for patients with Glaucoma. From Situation 1, we know that the drug has its 
maximum effect after 2 hours of being in contact with the tissues. After 2 hours we reach a critical drug 
mass at x=L of 0.00202 mg. The meshwork opens and acts like a sink and that .00202 mg immediately 
diffuses out of the cornea. The rest of the drug, or M0-Mc, remains and will now diffuse out while still 
affecting the tissue around it. Since the meshwork is unblocked, the drug will remain effective and keep it 
open until about 75% of the initial 0.2 mg has diffused out of the cornea. Using the model, we see that 
only 25%, or 0.05 mg, remains at the trabecular meshwork after 16.67 hours. Therefore, we can assume at 
the drug remains effective for about 18.67 hours after application.  

	
  

Figure	
  9: This is the pdepe solution to Situation 2b which now has the source term and the decaying exponential as the initial 
condition starting at Mc=0.00202 mg. 
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Figure	
  10: This is the pdepe solution to Situation 2b and shows the diffusion profile with the source term. 

	
  

	
  

Figure	
  11: This is the pdepe solution to solution 2b where the maximum value is M0-Mc with the source term and exponentially 
decaying intital condition. 
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VI. Conclusion 
Overall, our analytical and numerical methods accurately represented the dynamics of our model for the 
diffusion of the IOP lowering drug, Brimonidine, across the cornea and into the trabecular meshwork. In 
situation one, both methods displayed the diffusion across the cornea after the initial delta impulse of the 
drug at t=0 and a steady state concentration. The analytical solution more accurately represented the delta 
pulse as approaching infinity whereas the numerical method had the amplitude of the pulse as a finite 
value due to MATLAB’s pdepe approximation. In addition, our analytical method showed that the 
concentration in the cornea reached a steady state value of M0/L, or the linear density. After a simple 
conversion, we also saw that the numerical method had the same result. 
 
For Situation 2b, we changed our differential equation and initial condition to more accurately describe 
the dynamics of the system once the drug diffuses into the meshwork. Using the critical mass of the drug, 
Mc, we modeled a distance-dependent concentration at t=0 to show that the concentration after the 
meshwork became unblocked was not at equilibrium. The source term was added to account for the rest 
of the drug after Mc that had not yet diffused through the cornea to site of interest.  
 
Further studies should be done to model the exact behavior of the meshwork rather than assuming it acts 
as a sink. The right-hand flux boundary condition for Situation 2b can be changed to reflect this once it is 
well understood. In addition, we assumed that the source and the initial condition for this situation acted 
as a decaying exponential; however, research should be done to better characterize their dynamics. Lastly, 
because the eye is a 3D object, the system should ideally be modeled using all three axes to fully 
understand how diffusion occurs in the cornea and into the trabecular meshwork. 
 
Although our model is based on several assumptions, it is still useful for studying the effects of our 
proposed topical drug delivery method for treating Closed-Angle Glaucoma. The drug initially reaches 
the meshwork within two hours of application and remains in the cornea for over 36 hours. Using our 
model in Situation 2b we found that the drug remains at an effective concentration for about 16.67 hours. 
This implies that the patient would only need to apply one drop of the drug via the contact lens once per 
day as it still affects the tissues for up to 18.67 hours. Typical IOP patterns show a spike during the night 
while patients sleep with it remaining higher in the early morning [10]. After further analysis of our 
model and studies into the mechanics of the meshwork, doctors will be able to recommend an application 
protocol for the patients. Due to the prolonged exposure of the medication to the eye, the patients will 
only need to apply the medication once before bed for18.67 hours of effectiveness during IOP spikes.   
 
This procedure would be much simpler for the patient than using eye drops, which requires them to use 1-
2 drops per application up to 3 times per day. The necessary adherence to a rigorous eye drop regimen 
often results in patient neglect to apply the eye drops thereby reducing effectiveness. In addition, when a 
patient applies eye drops, much of the liquid does not remain in the eye but is removed when he/she 
blinks. Lastly, for some patients the drug ceases to work after a period of time because of the large doses 
required for the eye drops [10]. However, our proposed delivery of the drug could prolong its 
effectiveness due to the smaller and less frequent dose required. Due to all these concerns, our contact 
lens delivery mechanism has the potential to be more cost effective and easier to use while still 
successfully lowering IOP in Glaucoma patients.  
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VII. MATLAB Code 
 
A. Graphing of Analytical Solutions to Situations 1 and 2: 
 
function situations1n2_analytical 
% Homogeneous PDE: Linear (1-D) Diffusion 
% BENG 221 project Situations 1 and 2 
% Julia Hardy, Gabby Colvert, Mark Fleming 
  
% constants 
global D L M0 t_final 
D = 5.5e-6;  
L = 0.535; 
M0= .2; 
t_final= 4.5e4; 
  
dx = 0.008; % step size in x dimension 
dt = 650;  % step size in t dimension 
xmesh = 0:dx:L; % domain in x 
tmesh = 0:dt:t_final;  % domain in t 
nx = length(xmesh); % number of points in x dimension 
nt = length(tmesh); % number of points in t dimension 
  
  
%situation 1: Diffusion through the Cornea 
sol_sep = zeros(nt, nx); 
for n = 1:1:t_final-1 
    k = (pi*n)/(L); 
    sol_sep = sol_sep +(((2*M0)/(L))*exp(-D*(k^2)*tmesh)' * 
cos(k*xmesh)); 
end 
  
figure(1) 
subplot(2, 4, 1:2) 
surf(tmesh,xmesh,(M0/L)+sol_sep') 
title('a.) Analytical Methods Situation 1') 
xlabel('Time (s)') 
ylabel('x (mm)') 
zlabel('Concentration (mg/mm)') 
axis([0 t_final 0 L 0 inf]) 
  
subplot(2, 4, 3:4) 
surf(tmesh,xmesh,(M0/L)+sol_sep') 
title('b.) Concentration vs Time') 
xlabel('Time (s)') 
ylabel('x (mm)') 
zlabel('Concentration (mg/mm)') 
axis([0 t_final 0 L 0 inf]) 
  
subplot(2, 4, 6:7) 
surf(tmesh,xmesh,(M0/L)+sol_sep') 
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title('c.) Zoomed in View of Dynamics') 
xlabel('Time (s)') 
ylabel('x (mm)') 
zlabel('Concentration (mg/mm)') 
axis([dt 1E4 0 0.5 0 2]) 
  
%situation 2: Diffusion into the Meshwork 
sol_sep_2 = zeros(nt, nx); 
for n = 0:1:t_final-1 
    k = (pi*(1+2*n))/(2*L); 
    sol_sep_2 = sol_sep_2 + 4*M0/(L*pi*(1+2*n))*((-1)^n)*exp(-
D*k^2*tmesh)'*cos(k*xmesh);  
end 
  
figure(2) 
subplot(1,2,1) 
surf(tmesh,xmesh,sol_sep_2') 
title('a.) Analytical Methods Situation 2a') 
xlabel('Time (s)') 
ylabel('x (mm)') 
zlabel('Concentration (mg/mm)') 
  
subplot(1,2,2) 
surf(tmesh,xmesh,sol_sep_2') 
title('b.) Concentration vs. Time') 
xlabel('Time (s)') 
ylabel('x (mm)') 
zlabel('Concentration (mg/mm)') 
 
B. Graphing of Numerical Solution to Situation 1: 
 
function situation1_num 
  
% diffusion constant 
global D L t_final 
D = 5.5e-6;  
L=0.535; 
t_final=4.5e4; 
% domain 
dx = 0.008; % step size in x dimension 
dt = 650;  % step size in t dimension 
xmesh = 0:dx:L; % domain in x 
tmesh = 0:dt:t_final;  % domain in t 
  
length(xmesh) 
  
sol_pdepe = pdepe(0,@pdefun,@ic,@bc,xmesh,tmesh); 
  
subplot(2, 4, 1:2) 
surf(tmesh,xmesh,sol_pdepe') 
title('a.) Numerical Methods Situation 1') 
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xlabel('Time (s)') 
ylabel('x (mm)') 
zlabel('Concentration (mg/mm)') 
axis([0 t_final 0 L 0 inf]) 
  
subplot(2, 4, 3:4) 
surf(tmesh,xmesh,sol_pdepe') 
title('b.) Concentration vs Time') 
xlabel('Time (s)') 
ylabel('x (mm)') 
zlabel('Concentration (mg/mm)') 
axis([0 t_final 0 L 0 inf]) 
  
subplot(2, 4, 6 : 7) 
surf(tmesh,xmesh,sol_pdepe') 
title('c.) Zoomed in View of Dynamics') 
xlabel('Time (s)') 
ylabel('x (mm)') 
zlabel('Concentration (mg/mm)') 
axis([650 10000 0 .6 0 0.02]) 
  
  
% function definitions for pdepe: 
% -------------------------------------------------------------- 
  
function [c, f, s] = pdefun(x, t, u, DuDx) 
% PDE coefficients functions 
  
global D 
c = 1; 
f = D * DuDx; % diffusion 
s = 0; % homogeneous, no driving term 
  
% -------------------------------------------------------------- 
  
function u0 = ic(x) 
% Initial conditions function 
M0=0.2; % initial mass of drug 
u0 = (x==0.008)*M0; % delta impulse at center with weight M0 
  
% -------------------------------------------------------------- 
  
function [pl, ql, pr, qr] = bc(xl, ul, xr, ur, t) 
% Boundary conditions function 
  
pl = 0; % N/A 
ql = 1;  % zero flux left boundary condition 
pr = 0; % N/A 
qr = 1;  % zero flux right boundary condition 
    
C. Graphing of Numerical Solution to Situation 2a: 
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function situation2a_num 
  
% diffusion constant 
global D L M0 
D = 5.5e-6;  
L=0.535; 
M0=0.2; 
  
% domain 
dx = 0.01; % step size in x dimension 
dt = 700;  % step size in t dimension 
xmesh = 0:dx:L; % domain in x 
length(xmesh) 
tmesh = 0:dt:1.7e5;  % domain in t 
  
sol_pdepe = pdepe(0,@pdefun,@ic,@bc,xmesh,tmesh); 
  
subplot(1,2,1) 
surf(tmesh,xmesh,sol_pdepe') 
title('a.) Numerical Methods Situation 2a') 
xlabel('Time (s)') 
ylabel('x (mm)') 
zlabel('Concentration (mg/mm)') 
  
subplot(1,2,2) 
surf(tmesh,xmesh,sol_pdepe') 
title('b.) Concentration vs. Time') 
xlabel('Time (s)') 
ylabel('x (mm)') 
zlabel('Concentration (mg/mm)') 
  
% function definitions for pdepe: 
% -------------------------------------------------------------- 
  
function [c, f, s] = pdefun(x, t, u, DuDx) 
% PDE coefficients functions 
  
global D 
c = 1; 
f = D * DuDx; % diffusion 
s = 0; % homogeneous, no driving term 
  
% -------------------------------------------------------------- 
  
function u0 = ic(x) 
% Initial conditions function 
%Mc=0.00202; 
global L M0 
u0=M0/L; 
%u0 = Mc*exp(-x)/L; 
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% -------------------------------------------------------------- 
  
function [pl, ql, pr, qr] = bc(xl, ul, xr, ur, t) 
% Boundary conditions function 
  
pl = 0; % N/A 
ql = 1;  % zero flux left boundary condition 
pr = ur; % zero value right boundary condition, sink @ x=L 
qr = 0;  % N/A 
  
 
  
D. Graphing of Numerical Solution to Situation 2b: 
 
functionsituation2b_num 
 
% diffusion constant 
global D L Mc M0 k p 
D = 5.5e-6;  
L=0.535; 
Mc=0.00202; 
M0=0.2; 
k=0.00009; %constant 1 
p=1.5e-4; %constant 2 
  
% domain 
dx = 0.01; % step size in x dimension 
dt = 1500;  % step size in t dimension 
xmesh = 0:dx:L; % domain in x 
tmesh = 0:dt:1e5;  % domain in t 
sol_pdepe = pdepe(0,@pdefun,@ic,@bc,xmesh,tmesh); 
  
surf(tmesh,xmesh,sol_pdepe') 
title('Numerical Methods Situation 2b') 
xlabel('Time (s)') 
ylabel('x (mm)') 
zlabel('Concentration (mg/mm)') 
  
  
  
% function definitions for pdepe: 
% -------------------------------------------------------------- 
  
function [c, f, s] = pdefun(x, t, u, DuDx) 
% PDE coefficients functions 
  
global D M0 Mc L k p 
c = 1; 
f = D * DuDx; % diffusion 
s = (M0-Mc)*p*exp(-k*t); % source from situation 1 
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% -------------------------------------------------------------- 
  
function u0 = ic(x) 
% Initial conditions function 
%Mc=0.00202; 
global Mc k 
%u0=.2/L; 
u0 = Mc*exp(-k*x); %intial condition -- not constant concentration at 
t=0 
  
% -------------------------------------------------------------- 
  
function [pl, ql, pr, qr] = bc(xl, ul, xr, ur, t) 
% Boundary conditions function 
pl = 0; % N/A 
ql = 1;  % zero flux left boundary condition 
pr = ur; % zero value 
qr = 0;  % N/A 
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